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Liu & Chan (J. Fluid Mech. vol. 579, 2007, p. 467, hereinafter referred to as LC)
derived analytical solutions for the interactions between shallow water waves and
a viscous fluid seabed. In this paper we present a set of new experimental data
on the solitary-wave-induced flows in a viscous muddy seabed so as to validate
LC’s theory and the approximations employed. In the experiments a clear silicone
fluid was used as the viscous mud and particle image velocimetry was employed to
measure the velocity field inside the viscous mud. The shear stress along the bottom
of the mud bed and the displacement of the water–mud interface were also deduced
from data. Experimental results showed excellent agreement with the theoretical
solutions. Additional analyses were performed to show that the ratio of the muddy
seabed thickness to the corresponding bottom boundary-layer thickness, d , plays an
important role in characterizing mud flow regimes. When d � 1, the vertical profile
of the horizontal velocity in the mud bed can be parameterized as a parabola. On
the other hand, when d � 1, the velocity profile appears as a plug flow above a thin
viscous layer. When d ∼ O(1), the flow patterns are more complex than the other two
regimes and flow reversal can occur inside the viscous mud bed.

1. Introduction
In the nearshore region, where the water depth is relatively shallow in comparison

with the wavelength, interactions between propagating water waves and the seabed
can be significant. On one hand, the seabed can cause wave energy attenuation and
can also influence the direction of wave propagation. On the other hand, water waves
can generate deformation and transport of the seabed materials by exerting a pressure
field and a shear stress field. Since coastal sediments have a wide range of rheological
properties, it is difficult to describe them with a single constitutive model. In recent
years, several theoretical models have been suggested for different types of sediments.
For example, Liu (1973) and Liu, Park & Lara (2007b) examined the effects of
wave-induced percolation in seabed with coarse sediments. Other models consider the
seabed with finer sediments as elastic (e.g. Foda 1989; Wen & Liu 1995), poro-elastic
(e.g. Yamamoto et al. 1978), viscous (e.g. Gade 1958; Dalrymple & Liu 1978; Liu &
Chan 2007, hereinafter referred to as LC) or visco-elastic (e.g. MacPherson 1980)
materials.

In parallel to the theoretical development, efforts have also been made to perform
laboratory experiments to validate and extend these theories. For example, Liu &
Orfila’s (2004) analytical solutions for the boundary-layer flows under a transient
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long water wave, including the solitary wave, have been validated experimentally by
a set of particle image velocimetry (PIV) experiments (Liu, Park & Cowen 2007a).
Using the perturbation approach suggested by Liu & Orfila (2004), LC derived a set
of Boussinesq-type equations for transient long waves with the effects of a viscous
muddy seabed. In their derivation, three major assumptions were made: (i) the mud
bed is characterized as a viscous fluid and its viscosity is several orders-of-magnitude
higher than that of the water; (ii) the thickness of the mud bed is much less than
the characteristic wavelength; and (iii) the displacement of the water–mud interface
is negligible.

The primary objective of this paper is to present laboratory data for the solitary-
wave-induced flows in a viscous muddy bed so as to validate the theory of LC.
Further theoretical investigations on flow characteristics are also to be performed.

In § 2, we review LC’s theoretical approach and summarize their analytical solutions.
The laboratory experiments using PIV for the case in which the thickness of the mud
layer is less than that of the mud bottom boundary layer are described in § 3. Detailed
experimental results compared with theoretical solutions and subsequent discussions
are presented in § 4. Measured interfacial displacements are compared with theoretical
estimations to demonstrate that the displacements are indeed negligible. The role of
the relative thickness of the mud bed with respect to the bottom boundary layer, d ,
is investigated. The flow reversal observed in Liu et al. (2007a) within the laminar
boundary layer during the decelerating phase of the free-stream velocity also occurs
in the boundary layer of the mud bed if the thickness of the muddy seabed is larger
than the bottom boundary-layer thickness. Flow profiles for different d values are
discussed. In addition, bottom shear stress is deduced from the experimental data and
compared with the theory. Concluding remarks are given in § 5.

2. Analytical solutions for flows in a viscous mud bed under a solitary wave
Following LC, we denote the surface displacement of a solitary wave as ζ ′(x ′, t ′).

The solitary wave propagates in a constant water depth h′ over a viscous mud bed of
thickness d ′. The solitary wave is characterized by the wave height H ′

0, a horizontal
length scale l′

o, which is related to the width of the solitary wave shape, and the time
scale l′

o/
√

g′h′. The following dimensionless variables are then introduced:

x = x ′/l′
o, (z, d) = (z′, d ′)/h′, t = t ′√g′h′/l′

o, ζ = ζ ′/H ′
0,

p = p′/ρ ′
wg′H ′

0, u = u′/ε
√

g′h′, w = w′µ/ε
√

g′h′,

}
(2.1)

in which p′ represents the pressure, u′ the horizontal velocity component in the x ′-
direction, w′ the vertical velocity component in the z′-direction with the origin located
at the undisturbed free surface, ρ ′

w the density of water, and g′ the acceleration due to
gravity. Two dimensionless parameters have been introduced in the above definitions:

ε = H ′
0/h′, µ = h′/l′

o. (2.2)

Inside the mud bed, additional dimensionless variables are defined:

um = u′
m/ε

√
g′h′, wm = w′

m/αε
√

g′h′, α2 =
ν ′

m

l′
o

√
g′h′ . (2.3)

With ν ′
m being the kinematic viscosity of the mud, α2 can be viewed as the inverse

of a Reynolds number based on the horizontal length scale and the phase speed
of the solitary wave. The stretched vertical coordinate and the normalized mud bed
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thickness

η =
z + 1

(α/µ)
, d =

µ

α
d = d ′

(√
g′h′

ν ′
ml′

o

)1/2

, (2.4)

are introduced in the mud bed. We remark here that d represents the ratio of the
mud bed thickness and the wave-induced boundary-layer thickness in the mud bed.

LC assumed that the viscosity of the mud is several orders-of-magnitude higher than
that of the water, thus the flow motions in water associated with solitary waves can
be considered essentially irrotational. When the viscous effect is completely ignored,
analytical solutions describing a solitary wave are available. For instance, Grimshaw
(1971) presented a solution for the free-surface displacement and velocity fields up to
O(ε2). The details of Grimshaw’s solutions can also be found in Liu et al. (2007a).

LC argued that in the viscous mud bed it is the balance among the pressure gradient
force imposed by the propagating water wave above, the viscous shear force and the
inertia force that governs the fluid motion. Assuming the mud bed thickness is small
enough that the pressure is essentially uniform in the vertical direction within the
layer, LC derived the leading-order velocity fields as follows:

um(x, η, t) = γ

{
ub −

∫ t

0

∂ub

∂τ
erfc

[
η + d√
4(t − τ )

]
dτ

−
∞∑

n=1

(−1)n
∫ t

0

∂ub

∂τ

[
−erfc

(
−η + (2n − 1)d√

4(t − τ )

)
+ erfc

(
η + (2n + 1)d√

4(t − τ )

)]
dτ

}
, (2.5)

where γ = ρ ′
w/ρ ′

m is the density ratio with ρ ′
m being the density of the mud, and ub

the horizontal velocity at the water–mud interface and can be evaluated from existing
wave solutions (e.g. Grimshaw 1971). The non-dimensional shear stress along the
bottom of the mud bed τmb can be found by differentiating um with respect to η at
η = −d:

τmb(x, t) =
γ√
π

∫ t

0

∂ub

∂τ

1√
t − τ

[
1 + 2

∞∑
n=1

(−1)n exp

(
−

(
nd

)2

t − τ

)]
dτ. (2.6)

Note that both (2.5) and (2.6) can be readily applied to different kinds of wave loading
(e.g. cnodial wave) in shallow water as long as ub is provided. In the present paper,
we shall focus on the case of solitary waves for the sake of experimental simplicity.

3. Experiments
To validate the theories presented in LC, laboratory experiments measuring the

velocity fields inside and above the mud bed under solitary waves were carried out in
the DeFrees Hydraulics Laboratory at Cornell University.

3.1. Experimental set-up

The experiments were conducted in a wave tank (32 m long × 0.6 m wide × 0.9 m
deep), which is equipped with a piston-type wavemaker and glass sidewalls. A section
of the tank about 1m long was replaced with a clear acrylic basin to hold 1.7 cm
deep ‘mud’ and to allow the delivery of laser light from below. Three acoustic wave
gauges (Banner Engineering S18U) were used along with our in-house PIV system.
The measurement locations are shown in figure 1. The effects due to the finite length
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Wave gauge A Wave gauge B

12.35 m 0.38 m 0.48 m

12.30 m 0.97 m

PIV field of view h′ = 10 cm

d′ = 1.7 cm

Wave gauge C

Figure 1. Experimental set-up (not to scale).

Wave height Wavelength Wave period
H ′

0 (cm) l′
0 (m) T ′ (s) ε µ α d Re

0.75 2.62 2.55 0.075 0.038 0.045 0.144 3.33
1.90 1.72 1.59 0.190 0.058 0.056 0.178 3.51
2.90 1.44 1.28 0.290 0.069 0.061 0.195 3.65

Table 1. Characteristics of solitary waves generated in the experiments.

of the mud basin were insignificant as the interfacial displacements were negligible
and the mud flow was essentially driven by the local horizontal pressure gradient for
the cases considered herein (see § 4.2).

A clear silicone fluid (Dow Corning SYLGARD 184 base fluid; γ −1 = 1.05;
ν ′

m = 5.24×10−3 m2 s−1 at 25 ◦C) was chosen as the viscous mud. Gade (1958) reported
the values of viscosity and density of top-layer sediments in the Mississippi Delta
to be 0.1 <ν ′

m < 1 m2 s−1 and 1.6 <γ −1 < 2.0, respectively. Consider the experimental
case with the wave height ε = 0.190, the Reynolds number,

Re =
d ′√g′h′

ν ′
m

,

based on the mud bed thickness and the phase speed of the solitary wave is about 3.51,
as shown in table 1. The corresponding field condition, using water depth h′ = 10 m,
requires ν ′

m =5.36 m2 s−1 which is very close to the value by reported Gade (1958).
Three different solitary waves have been studied by changing the wave heights

(0.75, 1.90 and 2.90 cm), while the water depth was kept constant, h′ = 10 cm. The
characteristics of the waves generated in the experiments are summarized in table 1,
where the wavelength is defined by the width under the wave crest with both ends
where the surface displacement is 1.0 % of the wave height. Figure 2(a) shows
the water-surface profile measured at wave gauge B (above the centre of the PIV
measurement region) sampled at 100 Hz for the case with ε = 0.190. Grimshaw’s
higher-order solution (see Liu et al. 2007a) is also plotted in the same figure. Note
that −ξ = Ct −x is a time-like coordinate at a fixed spatial position, say x = 0, in figure
2. The agreement between the theoretical results and experimental data is excellent.
Similar excellent agreement is also observed for the other two wave conditions, i.e.
ε = 0.075 and 0.290.
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Figure 2. (a) Theoretical and experimental dimensionless water surface profiles and (b) dimen-
sionless horizontal water particle velocities for ε = 0.190: ——, Grimshaw’s solution; ◦,
experimental data.

3.2. PIV analysis procedure

The PIV technique used here is the same as that employed by Liu et al. (2007a)
which has been shown to be effective in measuring the velocity field inside the
laminar bottom boundary layer under a solitary wave. A detailed description of
the PIV technique can be found in Liu et al. (2007a), and here we provide only a
brief explanation with numerical values of parameters that are unique to the present
experiments.

Two field-of-views (FOV), which were illuminated with a Spectra Physics PIV400-
30 Nd:YAG laser system (300 mJ pulse−1, 60 Hz dual head system), were chosen to
capture images inside as well as above the mud layer (see figure 1). By passing the laser
beam through a cylindrical lens, a light sheet was formed, which was delivered from
below the mud basin to avoid disturbances from the free surface. Since the refractive
index of the silicone fluid is different from that of the water, the two square FOVs had
different side lengths: 24.6 mm in the mud and 29 mm in the water, respectively. The
FOV was set parallel to the sidewalls and slightly off the tank centreline to increase
image magnification. The distance between the FOV and the nearest sidewall was
about 20 cm, which is larger than the boundary-layer thickness of the mud associated
with the solitary waves used in the experiments, and the effects of the sidewall are
not significant. For each experiment measured inside the mud layer, 105 images were
collected with an SMD 1M60-20 camera (12 bits pixel−1, 60 Hz, 1024 × 1024 pixels)
at 15 Hz, yielding 104 velocity field data items at the same rate from the successive
cross-correlation analyses of two neighbouring images. A rectangular interrogation
subwindow with the long dimension in the horizontal was used (256 × 16 pixels with
75 % overlap), which yielded 13 subwindows in the horizontal, and 178 in the vertical
(1.5 mm horizontal and 0.1 mm vertical resolution inside the mud). Spurious vectors
were flagged using an adaptive Gaussian window filter suggested in Liu et al. (2007a).
The filter rejected less than 10 % of the returned data and no attempt was made to
smooth or interpolate the original data at this point. On the other hand, the same
values of parameters as used by Liu et al. (2007a) were applied to acquire and analyse
the images of the water region.
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Figure 3. Time histories of the dimensionless interfacial displacement for ε = 0.19;
——, the analytical solution; ◦, the experimental data.

4. Experimental measurements and theoretical results
4.1. Water particle velocity in the water region

Some of the laser light was scattered as it passed through the water–mud interface,
which caused saturation near the interface in the images taken from the upper FOV.
Thus, the velocity data inside the interfacial boundary layer could not be extracted.
However, the saturation did not occur far above the interface and the measurements
of the free-stream velocity were made. The data is sufficient for the present purpose,
as the water is essentially inviscid and our focus is on the velocity field inside the
mud layer.

Figure 2(b) shows an example of the measured water particle velocity components
in the horizontal direction compared with Grimshaw’s solution for the case with
ε = 0.190. In plotting the PIV data, horizontal homogeneity is assumed and the PIV
data are averaged along the horizontal direction within the FOV. Good agreement
is observed and this, together with the water-surface profile measurements (e.g.
figure 2a), demonstrate the high quality of the experimentally generated solitary
waves. The same is true for the other two cases, namely ε = 0.075 and ε = 0.290.

4.2. The displacement of the water–mud interface

LC assumed that the water–mud interface displacement ζ ′
m is negligible, which must

be confirmed. Experimentally, the interfacial displacements are obtained by the
following procedure. Assuming the locations of the interface are uniform in each
image (1024 × 1024 pixels), a Gaussian curve is fitted to each of 1024 columns of
an image near the interface (40 pixels per column). For each column, the location of
the interface is identified where the fitted curve has the maximum intensity and it is
averaged over 1024 samples. A typical value of the standard deviation is about 3 pixels
(0.07 mm), and is a little larger than the limit of the measurement error (1 pixel). On
the other hand, the theoretical interfacial displacement can be obtained by integrating
the kinematic condition. In figure 3, we show both theoretical estimations and
experimental measurements for the dimensionless variable ζm = ζ ′

m/H ′
0. The agreement

between the measurements and theoretical predictions is very good. We also note that
the displacements of the interface are almost three orders-of-magnitude smaller than
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Figure 4. Time histories of the dimensionless horizontal velocity at η = −0.5d for ε = 0.190;
——, the analytical solution; ◦, the experimental data.

those of the free surface. Thus, the effect of the interface displacements can be safely
neglected when the viscosity ratio is much greater than 1.

4.3. Velocity field inside the mud layer

The time history of the horizontal velocity at η = − 0.5d for ε = 0.190 is shown in
figure 4. Again, the theoretical results agree very well with the experimental
measurements and similar excellent agreement is found in the other two cases. The
integrals in the analytical solution (2.5) are numerically evaluated using Simpson
quadrature. Twenty terms in the series are used, although the solution has already
converged when ten terms are used.

In all experiments conducted, d is less than 0.2 (see table 1), i.e. the mud bed
thickness is less than 20 % of the wave-induced boundary-layer thickness. The vertical
profiles of horizontal velocity components at four different phases are plotted in
figure 5(a–d ). Indeed, in this case, the velocity profiles can be fitted approximately as
a parabolic function as follows:

um ≈ −γ

2

∂ub

∂t
(η2 − d

2
). (4.1)

Note that (4.1) has been found by requiring a parabolic solution form to satisfy
the depth-averaged horizontal momentum equation as well as the no-slip condition
at the bottom of the mud bed (η = − d) and the shear-stress-free condition along
the water–mud interface (η = 0). On the other hand, if d is greater than unity, the
parabolic approximation is no longer valid and flow reversal near the bottom will
occur during the deceleration phase (−ξ > 0). For example, in figure 5(e–h) the
analytical solutions are shown for the same conditions as those used in figure 5(a–d )
except that d is increased to 2.

When the thickness of the mud bed is further increased such that it is much greater
than the boundary-layer thickness, a boundary-layer flow region is developed under
a ‘plug flow’ region where the velocity is uniform (shear-free). This feature can be
seen in figure 5(i–p), i.e. for d = 5 and 10. In the plug flow region, the inertia force
is balanced by the pressure gradient force. Therefore, the plug flow velocity can be
determined as up = γ ub. A contour plot of ∂um/∂η is shown in figure 6 for d = 10 and
ε = 0.190. In the plug flow region, the value of the derivative should be very close to
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Figure 5. Vertical profiles of the dimensionless horizontal velocity at different phases for
ε = 0.190 for d = 0.178 (a–d ), d = 2 (e–h), d = 5 (i–l ) and d = 10 (m–p): ——, the analytical
solution; – – –, the parabolic approximation; ◦, the experimental data. (a) −ξ = −0.33; (b) −ξ =
−0.12; (c) −ξ = 0.09; (d ) −ξ =0.33; (e, i, m) −ξ = − 0.3; (f, j, n) −ξ = 0.0; (g, k, o) −ξ =0.3;
(h, l, p) −ξ =0.6.

zero. If we define the bottom of the plug flow as the location where ∂um/∂η = ± 0.2,
figure 6 provides the evolution of the plug flow thickness as the solitary wave passes
by.

4.4. Bottom shear stress

The dimensionless bottom shear stress for ε = 0.190 is shown in figure 7. The
experimental results are obtained by least-squares fitting a straight line through 10
data points (within 1 mm) above the bottom of the mud bed, whereas the theoretical
values are calculated from (2.6). Again agreement is excellent. Note that the time
history of the bottom shear stress is almost symmetric with respect to zero stress, for
the experimental case.
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Figure 6. A contour plot of ∂um/∂η when d = 10 for the case of ε = 0.190.
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Figure 7. Time histories of the dimensionless bottom shear stresses for ε = 0.190: ◦, the
experimental data for d = 0.178; ——, the analytical solution (2.6) for d = 0.178; – – –, the
analytical solution for d = 1; — · —, for d = 2; •, for d = 5.

Also plotted in the same figure are bottom shear stresses for different values of
d with otherwise identical conditions. They are no longer symmetric with respect
to zero stress, as a distinct shear layer is developed inside the mud bed and the
phase difference from that of the forcing wave is apparent. It is also clear that the
bottom shear stress becomes independent of the mud bed thickness when d exceeds
a critical value, which can be determined from the analytical solutions. For the case
of ε = 0.190, the critical value is roughly d ≈ 1.5.

5. Concluding remarks
We have presented theoretical and experimental analyses on the viscous flows inside

a muddy seabed which is driven by the horizontal pressure gradient induced by a
solitary wave. Analytical solutions suggested by LC have been compared with PIV
experiments. The PIV experiments were carried out for the case in which the thickness
of the mud layer is smaller than that of the bottom boundary layer of the viscous mud,
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i.e. d < 1. First, the interface displacements are predicted by requiring a kinematic
condition at the interface, which agreed well with the measurements. Time histories
of the horizontal velocity showed that velocities at different elevations have the same
direction when d < 1 and the velocity profile can be fitted by a parabola. However,
when the thickness of the mud layer is much larger than the bottom boundary-layer
thickness, the velocity profile appears to be a plug flow above a thin viscous layer. The
plug flow velocity and thickness can be determined theoretically. More complex flows
occur for d ∼ O(1). Finally, measured and estimated time histories of the bottom
shear stress show that it becomes almost independent of d , when d > 1.5.
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